A PLANE STEADY-STATE FREE-BOUNDARY PROBLEM
FOR THE NAVIER-STOKES EQUATIONS

V. V. Pukhnachev UDC 532.516

The model problem of the plane slow steady-state motion of a viscous incompressible fluid
with a free boundary is investigated. It is assumed that the free boundary does not have any
points in common with the solid surfaces confining the fluid. By the solution of the auxiliary
fixed-boundary problem for the Navier—Stokes equations the problem is reduced to an opera-
tor equation describing the form of the free surface. The existence and uniqueness problems
for the solution and its qualitative behavior are analyzed.

1. Statement of the Problem

Consider the plane steady-state motion of a viscous incompressible fluid in a curvilinear two-dimen-
sional channel, the upper boundary of which is free, while the lower boundary (bottom) represents a solid
rectilinear wall on which there are periodically distributed regions of fluid ingress and egress. We intro-
duce dimensionless variables, referring distances to the average depth h of the fluid, velocities to 'y
is the kinematic viscosity coefficient), and the pressure to ph %2 (o is the density of the fluid). Then, the
equations of motion are written in the form (mass forces are absent)

AV —v-Vv—Vp=0, V.v=0 (1.1)

in the strip —« < x; < ©, =1 < xy < f(x1). Here, x, = f(xq) is the equation for the free surface, which by
assumption is projected one-to-one onto the bottom x4 = —1. We seek solutions that are periodic in

Ve, +Loa) =v(zy, &), plas+ 1, ) =p (ear @), [+ 1) =7 (1) (1.2)
We denote by @ the "rectangle" 0 < x; < {, =1 < X, < f, with the bottom leg & = {xq, x5:0 < xy < [,

X, = —1}, and the curvilinear upper leg T = {x1, x:0 < X < I, Xy = fxy)}; Q denotes the closure of Q.

We denote by n the outward-normal unit vector, and by 7 the unit vector tangent to the free surface.
The boundary conditions at the free surface have the form

V!]’j'ﬂ:O, n~T§I‘A1=0 1.3)
("““i:)'—: }Ln-T|p-n - (1.4)
Vis/?
Ti; = — poy; + 28y, i, ] =1,2, 28;; = 8v; / 0xz; + 0v; / Bz

Here, T is the stress tensor, Sjj is an element of the strain rate tensor, the prime signifies differen~
tiation with respect to x;, and » = pr?(ch)™ is a dimensionless parameter related to the coefficient of sur—
face tension ¢. The first condition (1.3) signifies the absence of fluid flow across the free boundary, and
the second condition states that the tangential component of the stress vector acting on the free surface
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must vanish. Condition (1.4) states that the normal component of the stress vector is equal to the surface
pressure, which according to the Laplace equation is proportional to the curvature of the free surface.

Requiring that the dimensionless average depth of the fluid be equal to unity, we find that

§fdx1= . (1.5)

o

We also require fulfillment of the inequality |f| =6 < 1 for all x4 (6 = const > 0), which precludes
the possibility of contact of the free surface with the bottom.

Finally, for the system (1.1), we impose the following boundary condition on the bottom:

viz = W(z) (1.6)

Here, w is a given vector function, [~-periodic in x, such that the restriction of w to {0, {] is a function
in the Holder class C** %, 0 < o < 1, finite in (0, /). (See, e.g., [1] for the definition of the Holder spaces
CM*Y | integer-valued m = 0.) If ¢(x) € C*Y(Q), where Q is a closed bounded domain, then, | o] mtag de-

notes the norm of ¢ in C™Y, The expression w € C2*%[0, /] signifies that every component of the vector
w is a member of C?*1 [0, {]. The steady-state requirement yields the additional condition

wydz, =0 1.7)

Dy

which connotes zero total fluid flow across each "cell” of the bottom.

The stated problem calls for the determination of twice continuously differentiable functions v(x;, x,)
and f(x), as well as a continuously differentiable function p(x;, xy), all of which satisfy relations (1.1)~(1.6).

We note that the division of the conditions at the free boundary into two groups (1.3) and (1.4) is not
merely fortuitous. It is dictated by the proposed method of solving problem (1.1)-(1.6). In the first stage
the form of the free surface is fixed. For a fixed f, the boundary-value problem with conditions (1.2), (1.3),
and (1.6) is solved for the system (1.1). We refer to this problem hereinafter simply as the auxiliary prob-
lem. A remarkable feature of the auxiliary problem is the fact that it is solvable "in the large," i.e., with-
out any constraints on the initial data.

From the solution of the auxiliary problem, we determine n - T| r ~hand substitute the result into the
other condition (1.4) at the free boundary. The relation so obtained can be treated as an equation for the
determination of a curve of specified curvature. Inverting the curvature operator with conditions (1.2) and
(1.5}, we arrive at an equation f = F(f), where F is a nonlinear continuous operator in a certain Banach
space. We prove that for small |w]|,., this equation has a solution unique "in the small."

An essential feature of the proposed approach to the stated problem with an unknown boundary is the
introduction of the surface tension into the boundary condition on the free surface. It is, in fact, this fea~
ture that enables us to reduce problem (1.1)-(1.6) to a manageable operator equation. It is important to
mention that the role of the surface tension as a regulating factor in free-boundary problems has been in-
dicated earlier by Garipov [2] and Shcherbina [3] (as communicated to the author by V. Kh. Izakson, the
introduction of surface tension in the problem of the initiation of thermal convection in a fluid layer with a
free boundary makes it possible to reduce it to the classical problem of finding the bifurcation points of a
completely continuous operator).

2. Fundamental Definitions and Inequalities

Consider the space Ly(Q) formed by two-dimensional vector functions /-periodic in x; whose com-
ponents are square summable over a domain ©. The scalar product in L,(Q) is defined by the equation

(u, v) = Su-vdz
a

and the norm ||u|| = (u, u)%.
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We bring in the operator -4, which establishes a correspondence between the solutions u(x) of the
linear problems

—Au+Vp=E(x), Viu=0, r1=Q ‘ (2.1)

cu(m L) =u(z,e), ulp=0, upn=0, nThtv=0 (2.2)

and their free terms {(x), namely 4u = {. The domain of definition Dy of the operator £ consists of
solenoidal vector functions u € C3@) C'@) subject to the boundary conditions (2.2). The operator A is
symmetric, since for u, v = Dy

2
- 1 du, Bujy (v, n
(Au, v) = S(-—— Au+ Vp)-vdz = —- S > (55— T Fi)<6z )dx._ 2 S 2, Si5(u) Si(v) da
o] 0 i,5=1 J t Q =t
In the derivation of the latter equation the Green's formula for the Stokes system [1] is used. The
surface integrals resulting therefrom vanish due to conditions (2.2). On the set, we introduce the new sca-
lar product, asserting by definition that

0, v] = -, vy = ) S Sy () de (2.3)

Q i,j=1

It is easily shown that all axioms of the scalar product are satisfied for (2.3). In particular, if [u,ul=
0, then, Sjj) = 0 for x€ (1. We infer from the latter considerations and from u] s =0 thatu =0 in Q.

Completing the set D, on the norm [[u|, we obtain a subspace of L,(Q), which we denote by J(Q).
We denote by G(Q) the orthogonal complement to J(Q) in Ly(Q2). Following [1], we can show that G(Q) con—
sists of Vg, where @€ Wz Q) (see, e .g., [4] for the definition and properties of the Sobolev spaces Wm)
k)€ Wm(SZ) then, the symbol || ¢ H M) denotes the norm of ¢ in Wm. If m = 0, the superscript in the nota—
tion ”(p” ) is dropped.

The completion of the set D, on the norm [Ju]| = [u, u¥? yields a Hilbert space, which we call the
energy space of the operator .4 and denote by H(Q). Note that the elements of H(Q) satisfy "on the aver-
age" all the boundary conditions (2.2) except the last: n-T|p -7 =0. In the terminology of [5], the latter
condition is natural for the differential operator .4, and the remaining conditions (2.2) are principal condi~
tions.

By virtue of (2.3), the space H(Q) is a subspace of the vector space Wzi (Q) with norm

ke = [[qvup +upae]”

1

An exceedingly important consideration is the fact that the norms Hul]§ ) and JJul] are equivalent. It

is clear that [Jul]| = Cllu]] 2(1), where C can be evaluated as 2. The proof of the converse inequality between
the norms in H and W' is based on two inequalities that hold for u in H(Q). The first,

gg[u]‘zdnglgwwzd.r @.4)

is proved as in [1]; C; can be evaluated as the number (1 + 6)%, where 6 = max | 7| (here, and elsewhere, the
quantities Cy, k=1, 2, 3, ..., denote positive constants). In the proof of (2.4), use is made of the density
of D, inH(Q), and the fact thatu| =0 for u & D,

The second inequality is a variant of the well-known Korn inequality in the theory of elasticity; for
any u

2
SjVu|2dx<02 S > St (u)dx = C, [fjul]| ® (2.5)
Q Q i,j=1
where C, depends only on the domain Q. Inequalities of the type (2.5) have been verified for various sub-
spaces of Wg by A. Korn, as well as by Friedrichs [6], fidus [7, 81, and others. Due to the space limitations
of the article, we do not give the proof of (2.5). We merely point out that it is very much like the proof in
[7]. On the basis of (2.4) and (2.5), we obtain
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Tl < Colul, Jul<Cullufl, (C5= 1+ C)Cals, Co= (CLLY).

The latter inequality implies that the operator 4 is positive definite [5]. It follows from inequality
(2.5) and a theorem of Rellich [1] that any bounded set in H(Q) is compact in J(Q).

The foregoing properties of the operator .4 and its energy space H(RQ) enable us to prove the existence
of the eigenfunctions of the operator. The eigenfunctions ey, k=1, 2, 3, ..., are the solutions of the problems

—'Aek+vqk=}\,;{ek, V-ek——-O, x{—:—Q
e (7, -+ 1, 1) == e (x4, Tp)
el =0, er-n=0 n-T(e)|r-v=0

Invoking a variational method in accordance with the scheme described in [5], we deduce the following
results. The operator 4 has an infinite set of eigenvalues 0 < Ny = Xy ... =Ap = ..., A\p—~®as n—x.
The inverse of 4 is continuous. The eigenfunctions of 4 form a system that is complete and orthogonal
both in J(2) and in H(Q). The functions ek are infinitely many times differentiable in . Their smoothness
in a closed domain is determined by the smoothness of I'. If 6 C+1t¥ [0 ], m = 1, the functions ey are
of the Holder class C™+¥(Q). These functions as solutions of certain variational problems satisfy the
natural boundary condition for the operator 4 , n-T|p -7 = 0 in the customary sense.

Next, we consider inequalities (2.4) and (2.5). According to [1, 6-8], they hold for domains having a
piecewise-smooth boundary. We examine the family of domains Q bounded above by various curves I':xy =
fx), 0 =% </. We assume that the functions f are bounded in the aggregate on the norm of ct*t%o, 1,
so that | fli+o =6 < 1. It then turns out that the constants Cy and C, in inequalities (2.4) and (2.5) can be
chosen so as to be independent of the domain © (we also assume that this choice has already been made).
The foregoing assertion is proved by a simple contradiction argument.

3. Generalized Solution of the Auxiliary Problem

In this section, we prove the existence of a generalized solution of problem (1.1)-(1.3), 1.6). We as-
sume that the curve T is specified by functions fix;) € cl+2 (9, 7] and I fliva =0 < 1.

LEMMA 3.1. Let there be specified on [0, {] a function w(xy), finite in (0, )}, and satisfying (1.7), such
that w € CH, integer-valued m = 2. Then, a vector function a(x) exists, such that

a(z, — 1) =w(z), ac=C™(Q), V.a=0 o z=Q

a vanishes outside the rectangle =1 = xy = —( + 6)/2, x4, € supp w, and for any u € H(Q)
1
lj.a-u-Vudzl<—C?5‘[Vu{de (3.1)
QO TQ

Here, C, is the constant in inequality (2.5), and supp w denotes the support of w (see {9, 10, 1] for the
proef of the lemma). The indicated proofs yield the explicit construction of a solenoidal continuation a of
the vector w into the domain ©. The situation can also be so arranged such that

|a lz+a.ﬁ <Clw le+a,[0.13-

We choose and fix for all time one of the continuations a(x) according to Lemma 3.1.

A generalized solution of the auxiliary problem is a function v{x) such that v—a =u € H({§), and for
any & € H(Q), the following identity holds:

2iut+a,®] —{ufauta dP=0 3.2)

in which the expression [u, v] is defined by Eg. (2.2), and the following notation has been introduced:

{u, v, w} = ju-v-de:c
o3

If a generalized solution v € W?(2") for any interior subdomain Q' of @, then, there is a function px),
unique up o a constant term, such that Vp € Ly (@), and inequality (1.1) holds almost everywhere in € (an
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analogous assertion with regard to the generalized solution of the first boundary-value problem for (1.1)
has been proved in [1]).

LEMMA 3.2. Let v(x) be a generalized solution of the auxiliary problem Then, an upper bound
v ”2( ) exists, depending only on w, 6, and /.
For the proof of the lemma, we put & = u in the identity (3.2). Noting that for u € H(22), and the cho-
sena
{u,a,u} =0, {u,a,u}=0
we reduce relation (3.2) to the form

2flulft = {a, v, u} -+ {a,a,u} — 2 [a,u] 3:3)

Applying inequalities (3.1) to the estimate of the first term on the right-hand side and making use of
inequality (2.5) and the Cauchy—Bunyakovskii inequality, we infer from (3.3) that

flulj<<2]al” + V3 (al)y = (3.4)

Inasmuch as ||v]| 2(1) =< [lu] 2(1) + Jlaf 21), and the norms |ulf] 2(1) and [jul] are equivalent, Lemma 3.2 is
thus proved.

THEQREM 3.1. At least one generalized solution of the auxiliary problem exists.

The theorem is proved by the method of Galerkin according to the scheme proposed by Fujita [10] in
an investigation of the first boundary-value problem for the Navier—Stokes equations. For any n= 1, we
construct an approximate solution of the problem in the form

V,=a+uw,=a-+ 2, a;e;
i=1
The unknown coefficients o in the expansion of uy on the basis {e;} in H(Q) are determined from the
conditions

2[“n+aiei]_{uiz+avun+a7ei}:0

for everyi =1, ..., n. As in [10], we establish an a priori estimate of up in H(Q), that is independent of n,
and prove the existence of an approximate solution. The boundedness of u, implies that there is a subse-
quence of up weakly convergent in H(Q). By the Sobolev embedding theorem (see, e.g., [4]), it converges
strongly in L,(Q). We readily infer from the latter fact that its weak limit u = v—a satisfies the identity
(3.2), and thus, determines a generalized solution of the auxiliary problem.

THEOREM 3.2. If |w| a+cfo, ] 18 sufficiently small, the generalized solution of the auxiliary problem
is unique. :

The proof of the theorem is based on the derivation of the estimate [[ul] = Cy|W|yye @ + | W] 24a)s
which follows from (3.4) and the properties of the continuation a of the vector w. Otherwise, it follows the
proof of the uniqueness theorem for slow steady-state flows (the first boundary-value problem) in [1].

We note in conclusion, that the existence and uniqueness theorems for the generalized solution of the
auxiliary problem are also true in the case of weaker assumptions regarding the smoothness of w(x;).
Theorem 3.1 remains valid if w € W/2(0 {), and in order for Theorem 3.2 to hold true, it is sufficient for

lwil 1/2 to be small.

4. Smoothness of the Generalized Solution

We now investigate the differential properties of the generalized solution of the auxiliary problem,
and their dependence on the smoothness of the boundary I'.

THEOREM 4.1. If je& ™+« [0,1], w = ™= [0, I], m > 2, then, the generalized solution v of the
auxiliary problem belongs to C+¥ (), Vp € Cm'2+o‘ ).

The proof is based on two lemmas concerning the solution of the linear problem (2.2) for the Stokes
system (2.1).
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LEMMA 4.1, f£€L,(Q), r >1,and f€ €310, {], then, the corresponding solution u of problem (2.1)-
(2.2) belongs to W (@), Vp € Ly, (2), and

Jul® + VPl < Csl8lr (4.1)
LEMMA 4.2. If CECM—z+a_(§—5, fe= ™20, Il,m > 2, then, the solution u of problem (2.1)~(2.2) be-
longs to CIM+C(G), Vp € CM2+X(Q), and

[0 [mse + | VP lresta < ColElm-24a (4.2)

We defer the proof of Lemmas 4.1 and 4.2 until the end of this section, showing for now how these
lemmas imply the statement of Theorem 4.1.

Let v be the generalized solution of the auxiliary problem. Then, u =v—a and the corresponding p
satisfy the system (2.1) with £ = Aa—v Vv and the homogeneous boundary conditions (2.2). According to
Lemma 3.1, Aa € C!2T%(@). Due to Lemma 3.2, we have v € W,'(Q). By the embedding theorem [4], if © is
a plane bounded domain with a piecewise~-smooth boundary, then, the space Wt{n(ﬂ) is embedded in Lq(Sl)
with g = 2r/(@2~rm) for rm < 2, and in Lq(Q) with any finite g for rm = 2. Using this theorem with r = 2,
m =1, and the Holder inequality, we infer that v+ Vv € L..(2) and, hence, ¢ € L,.(Q) with any finite r. From
Lemma 4.1, we deduce the inclusion relation v = u +a € Wy>(Q). Then, 8v/8xi€W1§1 (©),i=1, 2. Using the
embedding theorem for WIIT’(SZ) in CB(@), 0< h < 1, for rm > n, where n is the dimension of © [1], and
choosing r = 2/(1— &), we find that 8v/5x; € CY¥Q), so that & € C¥€). In accordance with Lemma 4.2, we
infer that v =u+a € C***@). This proves Theorem 4.1, for the case m = 2. If m > 2, the same reasoning
can be applied several times.

For the proof of Lemmas 4.1 and 4.2, we use a priori estimates for the solutions of system elliptic
in the Douglis—Nirenberg sense [11]. An important algebraic condition has been formulated in [12, 13],
namely a complementary condition guaranteeing the existence of ultimately sharp estimates in the norms
of CH yng Wrr.n for the indicated systems. We know from [13] that the Stokes system (2.1) is Douglis—
Nirenberg elliptic. Straight-forward, though laborious, calculations show that the set of boundary conditions
(2.2) for the system (2.1) satisfies the complementarity condition.

Let us suppose that under the conditions of Lemma 4.1 a solution u € WISZ) (?) of problem (2.1)-(2.2)
exists. Then, estimate {4.1) follows from the general results of Agmon, Douglis, and Nirenberg [12], and
Solonnikov {14]. The absence from the right side of (4.1) of a term of the form C|u|,. is attributable to the
uniqueness theorem for problem (2.1)~(2.2): if £ =0, then, u = 0, p = const. It suffices to verify the exis-
tence of a solution of (2.1)-(2.2) for £= C®@®), f € C™[0, Il. Due to estimate (4.1), it is possible by suitable
approximations to then go over to the case § € Ly, f € c®10,4].

Introducing the stream function ¥ by the relétions u = 3P/ 8xg, Uy = —0Y /8%y, we can verily the fact
that problem (2.1)-(2.2) is equivalent to the following:

AN =1y (z), z2=Q
Y@y + 4, 2) = (04, 25), Plz=0, (0P /n)|z =0 (4.3)
Plo= 0, Ap— 2K (3) (9  In) [r = 0

where X = 8¢;1/8x9— 885/ 8%(> 9y/3n denotes the derivative in the direction of the outward normal to the
boundary of 2, and K is the curvature of I".

Problem (4.3) is self-adjoint. Its solution is unique, as can be proved by multiplication of the equa-
tion AAY = 0 by ¢, and integration by parts over the domain @ with recognition of the boundary conditions.
The system of boundary operators in (4.3) is normal and covers the operator AA {for the definition of the
latter, see [15]). The existence of a solution ¢ € C™ of problem (4.3) is now a direct consequence of the re~
sults of Schechter [15]. This completes the proof of Lemma 4.1. The proof of Lemma 4.2 is analogous.

5. Supporting Lemmas

1t follows from the results of Secs. 3 and 4 that if f = €3+ [0,l], w = €2*[0,]], |fll.a<< 6 <1 and
Wiy = €, where € >0 is small, then, the velocity v is uniquely determined in the solution of the auxiliary
problem, and the corresponding pressure is determined by the curvilinear integral

345



plx) = S(AV —v-Vv).ds + p,

in which py = p(0) is an arbitrary constant. This result permits us to bring in the operator %, which asso-
ciates with every l-periodic function f € ' 3 tunction B [f (z;)] according to the relation

Bfy=n-T|p-n+ p, (5.1)

(here, n and T|y are treated as functions of x1; we point out that the right-hand side of (5.1) does not depend
on py). According to Theorem 4.1 the function & [f (z,)], being a linear combination of p and E)vl/axJ with
coefficients in C2*%, is a member of the class C1 %[0, /. Moreover, this function is i~periodic in x. Itis
required to show that $ (f) is continuous as an operator of 3t in Y0, 7]. We first state the following
lemma.

LEMMA 5.1. Under the conditions of Theorem 4.1, the inequality
l v I2+a,ﬁ + I V.p Ia Q== CIO | w ‘2_,.“,[0‘1] (5 02)

holds, where Cj) does not depend on f or w, if |fls1a =6, [W|ope < €.

We shall not give the proof of Lemma 5.1. It is based on the Schauder estimates for the solutions of
elliptic systems [12, 14] and a repetition of the arguments in Sec. 4.

Next, we investigate the continuous dependence of the solution of the auxiliary problem on f, i.., on
the boundary T of the domain £. To do so, we transform to new independent variables ¢ and n according to
the relations

zy — f (z1)

A e C)

The domain © in this case, is transformed into the rectangle IT = {¢&, n:0 <t <!, =1 < n < 0}. The
system (1.1) is transformed to the following:

Pu_ 24 Pu AL ARSI

FEET T 14f  oEam T+ g T
A+nRFE—U+N | A+mfe v | du
+{ (1+])’ T T+ o
u (A+nf dg
—ugr 5t o =

v 2(1+ ) 6* i+dt+mpj2e
811’ 5t (5.3)

0_521— T+7  o&m (H—f)’a i

A+ RA— (4N Qf0fu_ v V0w 1 ag

+{ EE T 1+f} b T T a0
du (1+1|); ou 621 0

& — S G T =

where

w(§ m) = 2 (21, 2, 2(E, M) = 2 (21, T), ¢ (& M) = p (@1, 7)),
fla)=F®),f =df/d}
The boundary conditions (1.2), (1.3), and (1.6) generate the following boundary conditions for the sys-
tem (5.3):
s+ Lm=u@En), vE+Lm= vEn, ¢E+I n)=49En)

u=w (§), v=w,(§ for m=—1 (6.4)
L4 o o P
—Y G w0

fu—v=0 for n=0

The foregoing reduces the situation to an investigation of the continuous dependence of the solution of
the boundary-value problem (5.3)~(5.4) in a fixed domain on the, coefficients of the equations and the boundary
conditions. We denote by ull), o), q() (i =1, 2), the solution of problem (5.3)-(5.4) with 7 = f;(¢) € cira.
[0,1].
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LEMMA 5.2. If |fil34q =6 <1,i=1,2,and |W]ysy = €, where € > 0 is small, the following estimate
holds:

O —u® 2+ 100 — @, V(@0 — g9)], 2 < Cu| W heaton ) 1 — fa beaton (5.5)
We merely outline the plan of the proof, inasmuch as the complete proof is rather bulky. We denote

u¥ = g — y@, p* = pl) — v, q* = q(l) — q(z)

Proceeding from (5.3) and (5.4), we obtain for u*, v*, and g* a system of linear equations with linear
boundary conditions. The right-hand sides of these equations and of the boundary conditions represent sums
of products of the functlons u(l) 1), and q(i) or their derivatives by coefficients containing factors of the
form d 1(—f2)/dg »k=0,1, 2. For example, the last condition (5.4) yields the condition fylu*—v* =

={f1=f )'u

The resulting linear system in u*, v*, and g* is Douglis—Nirenbergelliptic, because its principal
part is the Stokes system transformed to new independent variables, and this transformation preserves the
ellipticity property [13]. The boundary-value problem for it satisfies the complementarity condition, be-
cause this condition is satisfied by the original problem. It is important to realize that for small ¢, the
new problem has a unique solution (this fact essentially follows from Theorem 3.2 on the uniqueness of the
solution of the auxiliary problem for small |w|s,,). The foregoing result enables us to deduce Schauder
a priori estimates for u*, v¥, and g* directly in terms of the right-hand sides of the equations and the
boundary conditions,

Using the results of [12, 14], we readily establish the following inequalities:

lu*lgw,ﬁ + |v* lzm'ﬁ + |Vg* IaH <C ‘19 1f1— falaea !0 1
X (l uw ]2+a,IT + | u® 122+qc,ﬁ -+ iU(D t2+u,ﬁ + I v |2+u.r-1+ | Vg !a.ﬁ)'

Inasmuch as the mapping (xq, x,) — (¢, n) belongs to class C3*%, we therefore, have ull), v e c2+ )
(i=1,2),vq¢€ c%(), and

l u® ’2+a,fI - I v(i):Izm,ﬁ + I Vg® ]a == <Cp, (‘ v "2+a Q + i vpi ] ,8)

The required estimate (5.5) follows from the last two inequalities and inequality (5.2).

LEMMA 5.3. Let the conditions of Lemma 5.2 be satisfied. Then, B (f) = C*** [0, I] , and the follow-
. ing estimate holds:

[ B (f1) — B (f2) hato1 < Cu IW |a, 0.7 [ F1 = f2 fsrapony (5-6)

The prooi is based on the transformation to variables &, n, and the subsequent application of Lemma
5.2. Calculating the expression n-T| -nin these variables, we obtain

BUG =[—(+)g+2 5 — (5.7)

2f (1 + 1) bu 201+ /7 8 _
TP S S ) o n=0

As mentioned, u, v€ C*74(7), q € ). Therefore, B (f) & C+[0, ). Determining the difference
¥ (f) — B (f,) by (6.7) and invoking estimate (5.5), we arrive at the required inequality (5.6).

6. Determination of the Form of the Free Surface

The following theorem comprises the fundamental result of the article.

THEOREM 6.1. Let the function w(x;) satisfy the conditions of Sec. 1, and let {w]y, o, [0, ] =&,
where ¢ > 0 is sufflclently small, then, a solution of the free-boundary problem (1.1)-(1.6) exists, such that
C2+a( ), pé€ ctrr@ ), F € C3+a [0, Z]. This solution is unique in a certain neighborhood of zero of the

product space

C2+a (_) % Cl+a<") % C3+zx [O ll
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Proof. Under the conditions of the theorem there is a solution of the auxiliary problem, v € C2*¥(Q),
pE€ cl*2(@). In this case, v is uniquely determined for small ¢, and p is determined up to a constant term
py- From the solution of the auxiliary problem, we determine n - T| p'nasa function of x; = £, and substi-
tute the result into condition (1.4). Using the notation (5.1), where 3 (f) is now uniquely determined, we
write (1.4) in the form

(VI{W) = U () — upo 6.1)

The existence of an i-periodic solution f(¢) of Eq. (6.1) requires that the average value of the right-
hand side of (6.1) on the interval [0, {] be equal to zero. We therefore, find p,= % (j), where B is the
value of the function BI[f (§)). Now, the pressure is automatically uniquely determined in the solution of the
auxiliary problem. Theorem 6.1 will be proved, if we can find an i-periodic solution £€ C3*% [0, /], with
J7= 0 and show that this solution is unique, if | f|3., o is sufficiently small.

Let g; > 0 be s0 small that for |w|,+o < & inequality (5.6) is true and, in addition,

14
wmax [ (B 1@) - B0 dr|<p<t

for any £ € C¥*¥[0, {], such that | f|; ., = 6 and §<1 is fixed. This choice of ¢; is permissible (for fixed u)
by virtue of Lemma 5.1 and the definition of % (). Then, Eq. (6.1) is transformed by twofold integration to
the form f =& (f), where

Fi)={nl@BUE —BMrdr< |1 — (u§{ffa [Fo) —BMd)| ds— o 6.2)

0 ]

L W)

and f, is a constant equal to the average value on [0, {] of the first term on the right-hand side of 6.2). We
denote by N the subspace of 3% (— 0, ») formed by {-periodic functions having zero-valued period averages.
It follows from the definition of ¥ and Lemma 5.3, that ¥ (f) = N, if f € K, where Kg is the ball |f]31q =

6 <1 in the space N, and

[F () lata < Cis| Wlare

where Cy; is independent of w, if |W |y =< £1- Let €5 = min (g4, Cy5*6), whereupon for [w|yiq = €, the
operation ¥ (f) maps the ball K¢ into itself. From the definition (6.2) of the operator ¥ and inequality
(5.6), we deduce the estimate

|F (f) — F (F2) lasa < Cia| Wlavo | F1 — fo lata ©-3)

for any fi, f2€ Kg. We now put € = min (g, Cig! ), where 8 >0 is any number less than unity. We infer
on the basis of (6.3) that for |w/,4q < € the continuous operator ¥ (f) is contractible in the ball Kg, so that
the equation f = & (f) has a unique solution in that ball. This proves the theorem.

7. Other Steady-State Free-Boundary Problems

for the Navier —Stokes Equations

Other plane steady-state problems for the Navier—Stokes equations are investigated analogously on
the assumption that the free boundary does not have points of contact with the bounding solid surfaces. We
cite as an example the problem of steady-state periodic waves in a heavy liquid over a sloping periodic
bottom. It is proved that if the bottom is sufficiently smooth and its angle of inclination with respect to the
horizontal plane is sufficiently small, then, the solution is uniquely determined by specification of the mass
flow or average depth of the liquid.

Another example is afforded by the problem of the steady motion of a fluid in the annular space be-
tween a rotating solid cylindrical surface and a free boundary on which the pressure is given as a function
of the polar angle, It is proved that if this function is almost a constant, the solution of the problem is
determined by specification of the area of the curvilinear annulus occupied by the fluid. In this case the
motion is not necessarily slow; however, it must be close to the rotation of the fluid as an integral solid.
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The technique described above for the analysis of plane problems involving a free boundary makes it
possible to investigate certain three-dimensional problems as well. A representative example is the prob-
lem of a doubly periodic flow in a layer whose upper boundary is free and whose lower boundary is a solid
plane investigated with a periodic alternation of ingress and egress zones. Here, the three-dimensional
analogs of Theorems 3.1 and 3.2 on the existence and unigueness of a generalized solution of the auxiliary
problem are valid. If we postulate that this solution has Hlder—continuous second derivatives up to the
free boundary, we can obtain results analogous to the lemmas and theorems of Secs. 4 and 5. In the final
stage it is required, instead of Eq. (6.1), to solve an equation of the same type as the equation for minimal
surfaces having a nonlocal operator on the right-hand side. Considering the velocity given on the bottom to
be sufficiently small and adopting the above-indicated assumption with regard to the solution of the auxiliary
problem, we can show that a doubly periodic free surface is uniquely determined in the small by specifica~
tion of the average depth of the liguid. ‘

In conclusion, the authors would like to thank R. M. Garipov and V. Kh. Izakson for affording an op-
portunity to become acquainted with the results of their unpublished work.
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